The complexity of a password

The complexity of a password

The effectiveness of a password is largely by the number of possible combinations. But the catch is that the user rests his confidence by the simple fact that the possible combinations are high. At what level can we say that the number of combinations is really high.

An example will illustrate the point. At the lottery 6/49 (in Canada), you must choose a combination of 6 numbers between 1 and 49. The formula is simple and it is a form factor:

The factorial is expressed by an exclamation mark "! ".

(N!) / (N-6)? = (N) * (n-1) * (n-2) * (n-3) .... 1 / [(n-6) * (n-5) * (n-4) ....]

If n = 49, then it gives you: 49 * 48 * 47 * 46 * 45 * 44 = 10 068 347 520 (10 million possibilities)


But since the draft order does not matter, you need to June 1 factorial:

6 * 5 * 4 * 3 * 2 * 1 = 720

So you have to divide the number of possible combination divided by 6 factorial = 10068347520/720 = 13983816 = 13 million.

In light of the theory presented small, is what it is conceivable that a person could consider a password of 6 digits is safe enough? You as well as I guess that despite the fact that there are nearly 10 million possibilities in the case of a draw without replacement with 49 possibilities, a password consists of 6 digits is considered very low. You probably douterez detection software that passwords will surely be able to find the password almost instantly.

Now back to our reality passwords. Regardless opportunities characters (0 to 9, a to z, A to Z, ...) we must know the password chosen does not necessarily have a length of 6. It can be any length (or more). In addition, characters can be reused in the password (eg "000000"). In probability, reuse is called surrender. The number of possibilities increases more or less significant. Observe the following reasoning if only single digit (0-9):

Passwords one character: 10 opportunities
Passwords 2 characters: 10 * 10 opportunities
Passwords 3 characters: 10 * 10 * 10 possibilities
Password of 4 characters: 10 * 10 * 10 * 10 opportunities
Passwords 5 characters: 10 * 10 * 10 * 10 * 10 opportunities
Password of 6 characters: 10 * 10 * 10 * 10 * 10 * 10 opportunities

10 + 10 ^ 2 + 10 ^ 3 + 10 ^ 4 + 10 ^ 5 + 10 ^ 6 = 10 + 100 + 1000 + 10 000 + 100 000 +1 000 000 = 1 111 110 options.

So just over 1 million possibilities.

Here, I made a small computer program that highlights the possible combinations of a password with a length of 5 and displays at the same time the processing time. I chose the maximum value of 5 because the program can complete his generation opportunities more quickly than if the password was 6. Moreover, the source code is available for download and you are free to modify to your liking. I want to warn you that the treatment for a password with a length of 5 takes about 15 seconds on my machine. The same treatment for a password length of 6 takes 3 minutes. My computer has the following specifications:

OS Name: Microsoft Windows 7 Professional
System Type: x64-based PC
Processor: Intel ® Core ™ i7-2670QM CPU2.2GHz, 2201 Mhz, 4 Core (s), 8 Logical Processor (s)
Installed Physical Memory (RAM): 8.00 GB



Press the END button on the ListBox1 to reach the last element of the list.



Warning message to the computation time

PassWordGame.zip

Here is a copy of the code that enables the generation of possibilities according to the logic presented in this paper, ie 0-9, 00-99, 000-999, 0000-9999, 00000-99999, 000000 to 999999. I insist on the fact that the mathematical formula presented earlier corresponds perfectly to computer code developed in Visual Basic Dot Net.




Private Function CheckLetter1()
        Dim index1 As Integer
        Dim index2 As Integer
        Dim index3 As Integer
        Dim index4 As Integer
        Dim index5 As Integer
        Dim index6 As Integer
        Dim found As Boolean
        Dim date1 As Date
        Dim date2 As Date
        Dim checker As String
        date1 = DateTime.Now
        found = False

        If NumericUpDown1.Value >= 1 Then
            'look for numbers 1st level
            For index1 = 0 To 9 Step 1 'recherche des chiffres
                checker = Microsoft.VisualBasic.ChrW(48 + index1)
                ListBox1.Items.Add(checker)
                If TextBox1.Text = checker Then
                    TextBox2.Text = checker
                    found = True
                End If
            Next
        End If
       

        If NumericUpDown1.Value >= 2 Then
            'look for numbers 2nd level
            For index1 = 0 To 9 Step 1 'recherche des chiffres
                For index2 = 0 To 9 Step 1 'recherche des chiffres
                    checker = index1.ToString & index2.ToString
                    ListBox1.Items.Add(checker)
                    If TextBox1.Text = checker Then
                        TextBox2.Text = checker
                        found = True
                    End If
                Next
            Next
        End If

        If NumericUpDown1.Value >= 3 Then
            'look for numbers  3rd level
            For index1 = 0 To 9 Step 1 'recherche des chiffres
                For index2 = 0 To 9 Step 1 'recherche des chiffres
                    For index3 = 0 To 9 Step 1 'recherche des chiffres
                        checker = index1.ToString & index2.ToString & index3.ToString
                        ListBox1.Items.Add(checker)
                        If TextBox1.Text = checker Then
                            TextBox2.Text = checker
                            found = True
                        End If
                    Next
                Next
            Next
        End If
       
        If NumericUpDown1.Value >= 4 Then
            'look for numbers  4th level
            For index1 = 0 To 9 Step 1 'recherche des chiffres
                For index2 = 0 To 9 Step 1 'recherche des chiffres
                    For index3 = 0 To 9 Step 1 'recherche des chiffres
                        For index4 = 0 To 9 Step 1 'recherche des chiffres
                            checker = index1.ToString & index2.ToString & index3.ToString & index4.ToString
                            ListBox1.Items.Add(checker)
                            If TextBox1.Text = checker Then
                                TextBox2.Text = checker
                                found = True
                            End If
                        Next
                    Next
                Next
            Next
        End If
       
        If NumericUpDown1.Value >= 5 Then
            ''look for numbers  5th level
            For index1 = 0 To 9 Step 1 'recherche des chiffres
                For index2 = 0 To 9 Step 1 'recherche des chiffres
                    For index3 = 0 To 9 Step 1 'recherche des chiffres
                        For index4 = 0 To 9 Step 1 'recherche des chiffres
                            For index5 = 0 To 9 Step 1 'recherche des chiffres
                                checker = index1.ToString & index2.ToString & index3.ToString & index4.ToString & index5.ToString
                                ListBox1.Items.Add(checker)
                                If TextBox1.Text = checker Then
                                    TextBox2.Text = checker
                                    found = True
                                End If
                            Next
                        Next
                    Next
                Next
            Next
        End If

        If NumericUpDown1.Value >= 6 Then
            ''look for numbers  6th level
            For index1 = 0 To 9 Step 1 'recherche des chiffres
                For index2 = 0 To 9 Step 1 'recherche des chiffres
                    For index3 = 0 To 9 Step 1 'recherche des chiffres
                        For index4 = 0 To 9 Step 1 'recherche des chiffres
                            For index5 = 0 To 9 Step 1 'recherche des chiffres
                                For index6 = 0 To 9 Step 1 'recherche des chiffres
                                    checker = index1.ToString & index2.ToString & index3.ToString & index4.ToString & index5.ToString & index6.ToString
                                    ListBox1.Items.Add(checker)
                                    If TextBox1.Text = checker Then
                                        TextBox2.Text = checker
                                        found = True
                                    End If
                                Next
                            Next
                        Next
                    Next
                Next
            Next
        End If


        date2 = DateTime.Now
        '        date2.Subtract(date1).ToString
        ToolStripStatusLabel1.Text = "Finished. " & date2.Subtract(date1).ToString & " and ListBox1 Count: " & ListBox1.Items.Count
        Return 0
    End Function


We understand that the process is extremely repetitive and there is no intelligence in code. The goal is simply to introduce the concept and nature of the problem.
In a future article, I'll maybe use a more elegant approach a computational point of view is called recursion. While some familiar recursion as a tool of choice, we see that in our case, it can be bad.


Download the sample project  : : PassWordGame.zip
Read the first series of this item: Password programming for beginners
Read the previous article in the series of this article: Password programming for beginners (Part 2)


0 Response to "The complexity of a password"

Posting Komentar